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Autonomous listening devices are increasingly used to study vocal aquatic animals, and there is a

constant need to record longer or with greater bandwidth, requiring efficient use of memory and

battery power. Real-time compression of sound has the potential to extend recording durations and

bandwidths at the expense of increased processing operations and therefore power consumption.

Whereas lossy methods such as MP3 introduce undesirable artifacts, lossless compression algo-

rithms (e.g., FLAC) guarantee exact data recovery. But these algorithms are relatively complex due

to the wide variety of signals they are designed to compress. A simpler lossless algorithm is shown

here to provide compression factors of three or more for underwater sound recordings over a range

of noise environments. The compressor was evaluated using samples from drifting and animal-

borne sound recorders with sampling rates of 16–240 kHz. It achieves >87% of the compression of

more-complex methods but requires about 1/10 of the processing operations resulting in less than 1

mW power consumption at a sampling rate of 192 kHz on a low-power microprocessor. The poten-

tial to triple recording duration with a minor increase in power consumption and no loss in sound

quality may be especially valuable for battery-limited tags and robotic vehicles.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4776206]

PACS number(s): 43.30.Xm, 43.38.Md [AMT] Pages: 1387–1398

I. INTRODUCTION

There is growing recognition of the value of acoustic

listening devices in studies of marine life. Many aquatic ani-

mals produce or respond to sound making this an important

source of information about their presence, movements, and

behavior. New statistical methods are enabling estimates of

abundance from call counts in underwater sound recordings

with applications to conservation management and mitiga-

tion of human impacts on species that are otherwise difficult

to study (Mellinger et al., 2007; Hastings, 2008; Marques

et al., 2009). To collect data for these analyzes, sound re-

cording devices have been installed on platforms as diverse

as long-term moorings (Wiggins, 2003; Clark and Clapham,

2004), underwater vehicles (Baumgartner and Fratantoni,

2008), and miniature animal tags (Burgess et al., 1998;

Johnson and Tyack, 2003). In most of these applications,

memory and battery capacity are constrained leading to

trade-offs among cost, size, recording bandwidth, and dura-

tion that impact the quality of sound recordings and the

resulting science. In long-term moorings, service trips to

replace batteries and hard drives represent an on-going

expense that must be weighed against the value of wide-

bandwidth or multi-channel recordings. Constraints are even

more acute in gliders that must perform multi-month mis-

sions or in tags that must be kept small to minimize impact

to the host animal. Some applications require radio transmis-

sion of underwater sound to a shore station (e.g., Clark et al.,
2007), and the limited bandwidth of the telemetry link places

another constraint on recording quality. There is then a sub-

stantial benefit in compressing audio data to maximize the

usage of recording or telemetry capacity, provided that this

does not impact the power requirements of the device or

compromise data quality. The issue of data quality is funda-

mental: Underwater sound recordings are a valuable scien-

tific resource that may be analyzed in many different ways.

It is difficult to anticipate the impact of data degradation on

the inferences that will be drawn from recordings, and so the

best policy is to record at the highest practical quality level.

Audio data compression has been researched intensely

in the communications industries fueled by applications in

telephones, music players, and the internet. Two classes of

algorithms have resulted, termed lossy and lossless according

to whether the original sampled signal can be recovered pre-

cisely from the compressed data. In lossy compressors, a high

compression factor (i.e., the input data rate divided by the out-

put rate) is paramount, and some distortion is accepted to

achieve this. Lossy algorithms such as LPC, MP3 and AAC

(Solomon, 2006) have been developed to deliver speech or

music through limited-capacity communication channels with

minimal perceptual degradation of the signal. These algo-

rithms take advantage of psychoacoustic masking in human

hearing to eliminate signal components that are largely inaud-

ible (Solomon, 2006), but spectrographic examination of the

recovered signals reveals substantial distortions and even new

signal components (Liu et al., 2008). These artifacts reduce

the value of the compressed signal for the kind of detailed

analyzes made by marine bioacousticians.
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In lossless compression, the requirement that the original

data are recoverable leads to data-dependent compression

factors. Lossless algorithms are used in “ZIP” compression

programs to distribute software and documents, but applica-

tions in audio compression have been less extensive. One appli-

cation in which lossless methods have excelled is in the

exchange of music on the internet. Although the late Jerry Gar-

cia of the Grateful Dead may have produced few redundant

bits, the use of lossless compression in distributing concert

recordings of this and other bands has resulted in the preserva-

tion of high quality historical archives. The success of a rela-

tively simple lossless compressor, SHORTEN (Robinson, 1994),

spurred the development of more sophisticated compressors

such as FLAC and WAVPACK, which are now included in media

players and multi-format data compression programs. These

algorithms share the same basic structure (Hans and Schafer,

2001; Solomon, 2006) compressing sound by first removing

the correlation between adjacent samples and then by effi-

ciently coding the residual. But the need to adapt to a wide va-

riety of music increases the complexity of these programs. In

SHORTEN, a bank of filters and coders are tried in succession to

find the best performer for each sound segment while both FLAC

and WAVPACK use adaptive filters and data-dependent coders.

A consequence of the adaptability of lossless audio com-

pressors is that these algorithms achieve surprisingly good

compression with underwater sound recordings. But despite

this, lossless compression appears to have had little traction

among marine bio-acousticians. One reason for this may be

the computational demands of algorithms such as FLAC and

WAVPACK, which are significant for an embedded processor in

a low-power recording instrument. To overcome this limita-

tion, we have developed a low-complexity lossless audio

compression algorithm specifically for underwater sound.

This algorithm has been in use since 2002 in a miniature

sound recording tag for marine mammals, the DTAG (John-

son and Tyack, 2003), but has not yet been reported in the

literature. Here we describe the algorithm and evaluate it

alongside other lossless compressors using a test set of

sounds from drifting and moored recorders and from sound

recording tags on cetaceans. The recordings include shallow-

and deep-water sound environments sampled at rates from

16 to 240 kHz and so represent a broad cross-section of

underwater sound signals. In the following section, we pro-

vide a brief review of the techniques used in lossless sound

compression and consider the characteristics of underwater

sound that make this signal suitable for compression. We

then describe the new algorithm in Sec. III. The methods and

data sets used to evaluate performance are described in

Sec. IV and evaluation results are reported in Sec. V. We

conclude the paper by discussing the performance attained

by the algorithm and examine the extent to which this

depends on the characteristics of the input signals and the re-

cording system.

II. COMPRESSION OF UNDERWATER SOUND

A. Lossless audio compression

Although audio signals are usually complex and non-

stationary, they contain two reliable sources of redundancy.

First, there are often passages with low signal levels that do

not require the full dynamic range of the digital representa-

tion and so can be coded with fewer bits. For example, a pas-

sage with a peak level of 10% of full scale can be coded with

three fewer bits per sample. Second, audio signals are corre-

lated from sample to sample, meaning that a part of the next

sample can be predicted from previous samples. If this pre-

dictable component is removed, the residual signal will be

smaller and so need fewer bits to represent. To take advantage

of this redundancy, lossless audio compression algorithms

generally incorporate two functional blocks (Hans and Scha-

fer, 2001): A filter and a coder. The filter removes most of the

inter-sample correlation by subtracting a prediction of the cur-

rent sample obtained by filtering prior samples, i.e., by form-

ing a residual signal yk¼ xk�P(q�1)xk� 1 where P(q�1) is the

prediction filter in the unit delay operator q�1, and xk is the

input signal at sample k. The residual will be less predictable

than the input signal and so more like white noise leading

to another interpretation of this operation: The filter

W(q�1)¼ 1� q�1 P(q�1), which produces yk from xk, has the

effect of flattening the spectrum of the input signal, leading to

the term “whitening filter.” As the spectral characteristics of

the input signal vary with time, an adaptive filter is used in

most compression schemes (Solomon, 2006) and the filter

coefficients must be sent along with the residual data to ena-

ble decoding. The filtering operation is reversed in the de-

coder to recreate the original signal and so the filter must be

stably invertible.

The residual signal after filtering has lower average

power than the input signal and so can be represented with

shorter binary words. Thus the second step in the compressor

is to re-code the residual signal, replacing each value, y, by a

code word with n(y) bits. In an ideal coder, n(y) is equal to

the inverse of the probability of y, i.e., values that occur of-

ten are coded with few bits (MacKay, 2003). But it is com-

putationally demanding to determine an optimal coder for

arbitrary data, and so a fixed (i.e., data-independent) code is

often used. This code will be most efficient if its implied dis-

tribution, 2�n(y), is similar to the probability distribution of

the whitened signal (MacKay, 2003). Some commonly used

codes are shown in Table I. Rice and Elias codes are

variable-length codes that allocate increasing numbers of

bits to represent larger values. For example, the number 8 is

coded in 17 bits in Rice-0 and 6 bits in Rice-3. As evident

from the growth rate of code words with absolute signal

level in Table I, each code has a different implied distribu-

tion: Rice-0 is effective for signals with low average levels

while Rice-1 is better for stronger signals. One other code

type, termed block floating point (BFP), is given in Table I.

This is a run-length code in which each sample in a block is

coded with a fixed number of bits chosen to fit the largest

absolute value in the block. For example, if the absolute

peak value in a block is 25, each sample can be represented

by 6 bits allowing numbers between�32 and þ31. The bene-

fit of BFP codes is that the coded data will have no more bits

than the input data (excluding the few extra bits needed to

indicate the word length in each block). For this reason, BFP

is useful for signals with high average levels that are not

efficiently coded by low-order Rice codes.
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Although the filter-coder structure is a common feature

of lossless audio compressors, the way these are imple-

mented varies (Hans and Schafer, 2001). Two popular algo-

rithms, FLAC and WAVPACK, both use adaptive whitening

filters followed by a coder and so are capable of tracking

changing noise spectra. In FLAC, the filter is selected on a

block-by-block basis from a battery of varying-length fixed

and data-derived FIR filters (Solomon, 2006). The residual is

coded with a varying-order Rice code. In WAVPACK, a single

tap adaptive filter is used but the filter is passed over the data

multiple times. The residuals are coded using Golomb codes,

a super-set of the Rice codes (Solomon, 2006). The success

of each method depends upon how well it is able to match

the spectral and distributional characteristics of the input sig-

nal over time. In the following section, we consider what

these characteristics are for underwater sound and the impli-

cations for compressor design.

B. Characteristics of underwater sound

The average underwater soundscape is dominated by

noise from wind, surf, rain and, in many areas, distant ship-

ping (Richardson et al., 1995; Dahl et al., 2007). Even though

animal calls or discrete boat traffic are frequent in some areas,

the duty-cycle of these noise sources, i.e., the proportion of

time that they are detectable above the ambient noise, is gen-

erally low. For example, sounds from distant sperm whales

are heard regularly in some deep-water habitats but, with a

clicking rate of around 0.5 Hz (Madsen et al., 2002) and a

received call duration of a few milliseconds (M�hl et al.,
2003), the duty cycle of these transients is small. Choruses of

fish and crustacea (e.g., snapping shrimp) may have a higher

duty cycle but have a low average power. Thus for under-

water sound, it is essential to focus on efficient compression

of the ambient noise rather than specific sound sources.

Although ambient noise in the world’s oceans varies

temporally and spatially, its spectral characteristics have a

consistent low-frequency emphasis as summarized in the

Wenz curves (Wenz, 1962). This characteristic is partly a

result of the increasing absorption of sound at higher

frequencies. At low frequencies, sound absorption is approx-

imately linear with frequency contributing to a roughly

4–6 dB/octave decrease in ambient noise from 100 Hz to

about 5 kHz. Above this frequency, sound absorption

increases more rapidly and the noise floor drops to a low at

about 30 kHz before increasing gradually at higher frequen-

cies due to thermal noise (Dahl et al., 2007). In quiet areas,

the ambient noise floor at 30 kHz is so low that it is challeng-

ing to build sound recorders capable of recording it, at least

with low operating power. The system noise of the recorder

may then dominate the background noise level above about

10 kHz. System noise arises from shot and Johnson noise

generated by electronic components as well as quantization

noise due to the finite-precision digital representation of

sound. These noise sources are spectrally flat above a few

hundreds of hertz. Thus from the viewpoint of compression,

underwater sound generally comprises two components: (i)

occasional transient signals that represent a small fraction of

the average power and (ii) a slowly varying noise floor with

a low-pass characteristic up to about 10 kHz and a flat spec-

trum above this. In the following sections, we show how

these characteristics of underwater sound lead to a simple

but effective compression algorithm.

III. A LOW-COMPLEXITY LOSSLESS COMPRESSION
ALGORITHM

In designing a compression algorithm for underwater

sound, our objective was to attain a moderate level of com-

pression with very low processing effort. The resulting algo-

rithm is dubbed X3 because it generally gives a compression

factor of three or more. Like other audio compressors, X3

operates on blocks of data and comprises a whitening filter

followed by a coder. But to minimize computation, the algo-

rithm uses a non-adaptive filter and selects a coder from a lim-

ited selection of codes that can be implemented by look-up

tables. Although other filters could be used, we will show that

a first-order difference is effective in whitening underwater

noise over a range of sampling rates. The lack of adaptation

in the whitening filter is offset by allowing the coder to

change from block to block, but the selection is made simply

according to the magnitude of the signal in the block rather

than via a computationally expensive best-fit procedure. The

encoding and decoding algorithms for 16-bit audio data are

described in the following sections. Parameter choices and

extensions to other resolutions are discussed in later sections.

A. Encoder

The X3 encoder operates on blocks of N samples,

performing a sequence of three operations on each block

(Table II): (i) filtering using a first-order difference, i.e.,

yk¼ xk� xk� 1, where xk is the kth sample of the incoming

data and k¼ 1,…, N, (ii) finding the largest absolute value,

M, in the block of filtered data, i.e., M¼maxk(|yk|), and (iii)

selecting and applying an appropriate coder given M. The fil-

ter is initialized using the last sample of the previous block

as x0 so that the filter effectively runs continuously from

block to block. To select a coder, M is compared to three

pre-determined thresholds, T1� 3. If M�T1, a Rice-0

encoder is chosen. If T1<M� T2, the coding is Rice-2,

TABLE I. Mappings of variable-length prefix codes for encoding small

signed integers. The BFP-2 code is a 3-bit (level level bits and one sign bit)

two’s complement representation of the numbers �3 to 3. A BFP�3 code

would have four bits per code word and cover the numbers �7 to 7. Note

that the mappings for the Rice and Elias-gamma codes are biased relative to

zero, i.e., negative numbers tend to have shorter code-words.

Number Rice-0 Rice-1 Rice-2 Rice-3 Elias-gamma BFP-2

0 1 10 100 1000 1 000

�1 01 11 101 1001 010 111

1 001 010 110 1010 011 001

�2 0001 011 111 1011 00100 110

2 00001 0010 0100 1100 00101 010

�3 000001 0011 0101 1101 00110 101

3 0000001 00010 0110 1110 00111 011

�4 00000001 00011 0111 1111 0001000 -

4 000000001 000010 00100 01000 0001001 -
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while Rice-3 is used if T2<M� T3. If M> T3, a BFP

encoder is used. The BFP encoder finds the exponent, E, of M
(i.e., the number of bits needed to represent M) and then left-

truncates each filtered sample to Eþ 1 bits (i.e., E bits plus a

sign bit). If the input signal is close to full scale, it may not be

possible to represent the output of the whitening filter in 16

bits (i.e., if |xk� xk� 1|> 32 767). To handle this, the unfiltered

data are stored verbatim when E¼ 15 or if the subtraction

overflows, and this is termed pass-through coding.

The compressed data block is represented by a header

defining the coder followed by the packed output from the

coder. Because of the low average level of underwater

sound, Rice coders are likely to be selected far more often

than the BFP coder, and so a short block header is used for

Rice codes. A 2-bit header with values 1, 2, and 3 indicates

Rice codes 0, 2, and 3, respectively. A header value of 0

indicates a BFP or pass-through block in which case the

exponent, E, is coded in the following 4 bits to make a 6-bit

header. Pass-through coding is indicated by E¼ 15.

Given that the whitening filter and the coders are fixed, the

X3 algorithm has only four user-selected parameters: The block

length, N, and the coder transition thresholds T1� 3. These

could be selected based on the sampling rate and the expected

ambient noise level with respect to the least-significant bit, but

we show later that fixed parameter values work well over a

wide range of conditions. Of the four parameters, only N is

required to decode X3 data, and so this must be included in an

information block accompanying each X3-encoded file.

B. Framing

As defined in the preceding text, each X3 data block

comprises a code-selection header (2 or 6 bits long) followed

TABLE II. Pseudo-code for the X3 encoding algorithm. Vector V contains the last input sample of the previous block along with the next N input samples.

The function bit_write(n, x) expresses the number x in n bits and packs these to the output stream. If the number is signed, it is treated as an n-bit two’s

complement number. Function next_log2(x) returns the minimum number of bits required to represent a positive number, x. An additional bit is required to

represent signed numbers between �x and x.

function X3_encode(V,N) V is the data vector to be compressed; V(0) is filter state.

N is the number of samples

M¼ 0

for k¼ 1:N, Filter the N samples and find max absolute value

D(k)¼V(k)�V(k� 1) Apply the whitening filter

M¼max(abs(D(k)), M) Find the largest abs filtered value

end

if M<T1, Check if the block can be Rice-0 encoded

bit_write(2, 1) If so, write the Rice-0 block header

for k¼ 1:N, Code N samples using the Rice-0 code tables

x¼CODE0_tab(D(k)) Lookup the Rice code for the kth sample

n¼LEN0_tab(D(k)) Lookup the code length for the kth sample

bit_write(n, x) Write the result to the output stream

end

elseif M<T2 Check if the block can be Rice-2 encoded

bit_write(2, 2) Write the Rice-2 block header

: Code N samples using the Rice-2 tables

elseif M<T3 Check if the block can be Rice-3 encoded

bit_write(2, 3) Write the Rice-3 block header

: Code N samples using the Rice-3 tables

else Otherwise, this is a BFP or pass-through block

E¼ next_log2(M) Find the number of bits to use per code word

bit_write(6, E) Write the BFP block header

if E< 15, If E is less than 15 bits, use BFP encoding

for k¼ 1:N,

bit_write(Eþ 1, D(k)) Write (Eþ 1)-bit signed samples to the output stream

end

else Otherwise, use pass-through encoding

for k¼ 1:N,

bit_write(16, V(k)) Write 16-bit signed samples to the output stream

end using the unfiltered data

end

end

where the code and length tables are:

CODE0_tab¼ [… 1, 1, 1, 1, 1, 1, 1, 1, 1,…] LEN0_tab¼ [… 8, 6, 4, 2, 1, 3, 5, 7, 9,…]

CODE2_tab¼ [… 7, 5, 7, 5, 4, 6, 4, 6, 4,…] LEN2_tab¼ [… 4, 4, 3, 3, 3, 3, 4, 4, 5,…]

etc. from Table I. The lookup indices, D(k), are integers, so these tables are bi-directional. The value at the 0th index of each table is shown in bold and values to the

left of this are accessed with negative indices, e.g., CODE2_tab(�2)¼ 7.
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by a variable number of bits encoding the N input samples.

Consecutive X3 blocks can be concatenated in a file without

additional headers. However, because of the varying block

length, it is not possible to decode X3 data from a random

starting point. Instead blocks must be decoded consecutively.

To enable random access and to allow recovery from data

errors (e.g., as can occur if Flash memory is used for data

storage), groups of blocks are framed with a header defining

the size of the data frame (Fig. 1). Decoding software can

then skip from frame to frame until the required data

segment is located. A 20-byte frame header is used contain-

ing the start time of the first sample, a data source identifier

(allowing multiple data sources to be merged into a single

file), the number of bytes and samples in the frame, CRC

parity checks (Koopman and Chakravarty, 2004) on the

header and data, and a key value to simplify searching for

frame headers. One such header can frame several thousand

samples (i.e., hundreds of blocks) keeping the overhead low.

FIG. 1. Frame structure required for non-sequential decoding of X3 data. Frames can contain multiple X3-encoded blocks with no additional headers other

than the 2 or 6 bit code selection header in each block. A known key value is placed in the frame header to help locate frames when searching through the re-

cording. The 64-bit time value should have a resolution of at least one count per sampling rate to facilitate searching and the detection of missing samples.

TABLE III. Pseudo-code for the X3 decoding algorithm. The input is a stream of packed binary data containing a block of N encoded samples. The decoded

output is assembled in vector V. At the start of the routine, the 0th element of V is assumed to contain the last output value from the previous decoded block

(this is the filter state). Function bit_read(n) returns the next n bits from the input stream and signed_bit_read(n) reads the n bits as a signed number. Function

skip_zero_bits() returns the number of 0-valued bits in the input stream until the next 1.

function V 5 X3_decode(V,N) V is the output data vector; V(0) is the filter state

N is the number of samples in the block

c¼ bit_read(2) Read the block header

if c¼¼1, If this is a Rice-0 encoded block

for k¼ 1:N, For N samples

n¼ skip_zero_bits() Find the # of leading zeros in next code word

bit_read(1) Discard the leading 1

d¼ INVRICE(n) Table lookup to convert to a signed number

V(k)¼ dþV(k� 1) Invert the whitening filter

end

elseif c¼¼2, If this is a Rice-2 encoded block

for k¼ 1:N, For N samples

n¼ skip_zero_bits() Find the # of leading zeros in next code word

bit_read(1) Discard the leading 1

r¼ bit_read(2) Read the 2-bit suffix of the code word

d¼ INVRICE(rþ 4 n) Table lookup to convert to a signed number

V(k)¼ dþV(k� 1) Invert the whitening filter

end

elseif c¼¼3, If this is a Rice-3 encoded block

Decode N samples with a 3 bit suffix as above

else This is a BFP or pass-through block

E¼ bit_read(4) Read the rest of the block header

if E ¼¼ 15, If this is a pass-through block

for k¼ 1:N,

V(k)¼ signed_bit_read(16) Read 16-bit words from the input

end No inverse filtering is needed

else Otherwise, this is a BFP-encoded block with

for k¼ 1:N, Eþ 1 bits/word

d¼ signed_bit_read(Eþ 1) Convert the next Eþ 1 bits to a signed number

V(k)¼ dþV(k� 1) Invert the whitening filter

end

end

end

where:INVRICE¼ [0,�1,1,�2,2,�3,3,�4,4,…] is a conventional table with indices 0, 1, 2,… The same lookup table is used for all Rice codes.
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One other piece of information is needed to allow a

frame of data to be decoded without reference to previous

frames: The initial state of the filter used to whiten the data.

Although the filter state could be reset to zero at the start of

each frame, another alternative is to simply provide the first

sample of each frame as an uncoded value (i.e., with pass-

through coding). This can then be used to initialize the filter

state for the remainder of the frame.

C. Decoding

An X3 frame can be decoded block by block using the

pass-through sample at the start of the frame to initialize the

filter state. Successive blocks are then decoded using the algo-

rithm in Table III. For each block, the first two bits are

inspected to determine which coder was used. For Rice-coded

blocks, N samples are then decoded using the self-punctuating

feature of these codes to identify each code word (MacKay,

2003). Code words are restored to signed values using a look-

up table and then passed through the inverse of the whitening

filter (i.e., an integrator, yk¼ yk� 1þ xk) to recover the original

data. For BFP-coded blocks, the additional four header bits

are read to determine the word length, E, and then the N sam-

ples are read from the input stream as (Eþ 1)-bit words. If E
is 15, the block was uncoded and no further processing is

needed. For E< 15, the code-words are restored to 16-bit val-

ues by sign extension and then passed through the integrator

to reverse the whitening filter.

A drawback of using a differentiator for the whitening

filter is that the inverse filter, an integrator, has infinite mem-

ory. This means that a bit error in the compressed data will

cause every subsequent decoded value to be incorrect. The

integrator state is re-initialized at the start of each frame so

decoding errors will not pass beyond a frame. However, it

is not generally possible to recover the data within the

affected frame, suggesting that frames should be kept short

if occasional data errors are possible. Frames with bit errors

will be detected by performing a parity check.

IV. PERFORMANCE EVALUATION

A. Test data

The performance of the X3 algorithm was evaluated

using a set of underwater sound samples covering a range of

sampling rates and ambient noise conditions. The test sam-

ples were selected from archives of on-animal and far-field

recordings (Table IV). Although most recordings were made

near cetaceans, the soundscapes also include boats, fish-

finders, surf, and crustaceans. The sampling rates extend

over more than an order of magnitude (16–240 kHz), and the

samples were recorded in shallow and deep water environ-

ments. Sample lengths of 5 min were chosen to make it prac-

tical to evaluate algorithms with a variety of settings but no

special criteria were used to select samples from the raw

recordings. All sound samples are available at http://sound

tags.st-andrews.ac.uk where shorter segments (the first 15 s

of each file) are also available.

On-animal recordings (Table IVa) were made by DTAG

sound recording tags attached with suction-cups to the dorsal

surface of cetaceans (Johnson and Tyack, 2003). These tags

included a single-pole high-pass filter and a two-pole low-

pass filter prior to 24-bit sigma-delta analog-to-digital con-

verters (ADCs). According to the datasheet (Cirrus Logic

Inc., 2006), the ADCs have a minimum dynamic range of

93 dB implying an effective number of bits of <16 (Orfani-

dis, 2010, also see Sec. VI) and so only the most significant

16 bits of the 24-bit samples were stored.

Off-animal recordings (Table IVb) were made with

DMON digital acoustic monitors (Woods Hole Oceano-

graphic Institute, Woods Hole, MA) suspended below drift-

ing buoys (El Hierro and Pico Island) or floating above an

TABLE IV. Data sets used to evaluate the X3 algorithm. All recordings have 16-bit resolution. The clipping level is the maximum sound level in dB re 1 lPa

that can be represented by the recorder. Samples GR48 and GI60 were produced by decimating 96 and 120 kHz recordings by 2 in MATLAB (Version 7, Math-

works Inc.) and then restoring the filtered data to integer values.

(a) On-animal recordings (DTAG)

Sample Species

Recording

depth (m)

Water

depth (m)

Sampling

rate (kHz)

Bandwidth

(kHz)

Clipping

dB re lPa Activity

LI192 Cuvier’s beaked

whale (Liguria, Italy)

730 2000–3000 192 0.5–80 172 Foraging by

echolocation

NO96 Sperm whale

(Norway)

1170 1500–2000 96 0.5–47 182 Foraging by

echolocation

GR48 Humpback whale

(Greenland)

150 200–300 48 0.5–20 182 Lunge feeding

(b) Moored or drifting recorders (DMON)

Sample Location

Recording

depth (m)

Water

depth (m)

Sampling

rate (kHz)

Bandwidth

(kHz)

Clipping

dB re lPa Sounds

PI240 Azores

(Pico Island)

650 1500 240 1–100 182 Sperm whale

EH120 El Hierro

(Canary Is.)

200 1500 120 0.1–51 170 Blainville’s beaked whale,

small boat, 50 kHz fish-finder

GI60 Goat Island

(New Zealand)

5 10 60 0.1–26 170 Reef sounds, snapping

shrimp, surf

GI16 16 0.01–7 170
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anchor (Goat Island). The DMONs included a single-pole

high-pass filter and a seven-pole Butterworth anti-alias filter

prior to 18-bit successive approximation ADCs. The data-

sheet dynamic range for the ADCs is 93 dB (Analog Devices

Inc., 2007) and so only the most significant 16 bits of each

sample were retained. Signals were initially sampled at high

rates (80, 240, or 480 kHz) and then decimated by a factor of

2–5 in the recorders using 36 - to 42-tap symmetric FIR fil-

ters producing the sampling rates given in Table IVb.

The power spectrum of each test sample is shown in

Fig. 2. Sound samples from the moored/drifting recorders

show the expected trend of decreasing energy at higher fre-

quencies. Local noise sources provide some additional

spectral features, e.g., boat noise (0.5–4 kHz) and an echo-

sounder (50 kHz) in the EH120 sample. The low-frequency

emphasis is also apparent in two of the on-animal record-

ings (LI192 and GR48) with water flow over the tag con-

tributing to the low-frequency (i.e.,<1 kHz) energy. High

signal levels from sperm whale clicks dominate the NO96

spectrum even though these occupy only a small fraction of

the recording time.

The occurrence rate of strong transients in the record-

ings influences their compressibility. Log-survivor plots of

the minimum word length needed to represent the data in

each recording (Fig. 3) provide an indication of how often

transients occur. These plots are produced by finding the

peak magnitude in each block of 50 samples and then con-

verting this to a bit count, an operation that is effectively the

same as BFP compression with no whitening filter. The log-

survivor plots show the proportion of blocks that require at

least a given number of bits per word. The high-sampling

rate off-animal recordings contain few strong transients and

so require fewer than 6-8 bits/word to code most blocks (i.e.,

a compression factor of 2-2.7 using filter-less BFP encod-

ing). The low-frequency reef recording (GI16) requires

about 11 bits/word because of frequent transients from surf

noise. Flow-noise and calls from nearby animals in the on-

animal recordings also lead to higher bit counts (e.g., 9–11

bits/word for LI192 and GR48) with more than 12 bits/word

required to code blocks in NO96 that contain clicks from the

tagged sperm whale.

B. Performance tests

The compression performance of X3 was compared to

four public-domain lossless compression programs (Appen-

dix). Two of these (LZ77 and PPMd) are intended for gen-

eral data compression and form part of popular ZIP

compression tools. These algorithms compress data by

replacing commonly occurring word sequences by pointers

into a library. A variant of LZ77 is the usual algorithm

employed when compressing a file on a PC. The newer

FIG. 2. Spectrum levels (i.e., power in 1 Hz bands in dB) of the test recordings relative to the 16-bit quantization noise power. The RMS quantization noise for

16-bit representation referred to a full-scale of 61 is 1/(215
ffiffiffiffiffi
12
p

). The moored and drifting recordings are shown in the left panel, and on-animal recordings are

in the right panel. The solid lines show the spectrum level averaged over the 5 min samples while the dotted lines show the system noise level for each record-

ing. System noise measurements were made with the device in a quiet room (tags) or by bypassing the hydrophone with a fixed capacitor equal to the capaci-

tance of the hydrophone (moored/drifting recorders). GI16 is similar to GI60 over 0.1–8 kHz and is not shown.

FIG. 3. Magnitude distributions of the test recordings shown as the log-survivor plots of the peak signal magnitude in 50-sample blocks, an indication of how

frequently large signals occur in the data. Magnitude is expressed in bits, and the points on the curves indicate the percentage of blocks that require at least n
bits per word to code, where n is the x-axis value, e.g., for GI16, <20% of blocks need 10 or more bits/word. The log-survivor plot for GI60 is similar to that

for EH120 and is omitted for clarity.
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PPMd (prediction by partial matching) algorithm codes the

residuals after prediction using a dynamic library and so is a

generalization of the filter-coder methods used in lossless

audio compression. The two other methods evaluated (FLAC

and WAVPACK) were specifically designed for audio compres-

sion as described earlier. The settings used with the public-

domain algorithms are listed in the Appendix. For X3, a

block length of 50 samples was used, and the code transition

thresholds were set so that blocks with magnitude between 0

and 3 were coded with Rice-0, between 4 and 8 with Rice-2,

between 9 and 20 with Rice-3, and above 20 with BFP.

Unlike FLAC and WAVPACK, X3 uses a fixed filter and so

cannot adapt to the ambient noise spectrum. To examine the

adequacy of the first-order differentiator used in X3, we esti-

mated the compression performance that would have been

attained with filters optimized to each test sample, assuming

an ideal coder. These filters were least-square-error linear

predictors calculated from the autocorrelation function of

each test sample (Jackson, 1996). To focus the predictors on

the ambient noise rather than infrequent but strong transi-

ents, the autocorrelation was only calculated on data seg-

ments of 1024 samples that had RMS signal levels <0.1% of

full scale. The filters were implemented using floating point

computations, but the residuals were restored to 16-bit inte-

gers for performance evaluation. The compression attainable

with each filter was calculated from the estimated entropy,

H, of the filtered signal:

H �
X32767

k¼�32768

� nk

Ns
log2

nk

Ns

� �
(1)

where nk is the number of occurrences of value k and NS is

the number of words in the sound sample (MacKay, 2003).

The entropy is the number of bits/word needed to code the

filtered data with an ideal coder. This was converted to a

compression factor by dividing the incoming word length

(16 bits) by the entropy.

V. RESULTS

A. Performance comparison

The compression factors obtained with the public-

domain and X3 algorithms are given in Table V for each test

sample. As expected, the LZ77-based GZIP algorithm per-

forms relatively poorly giving compression factors of about

2, similar to those of a filter-less ideal coder (column 3 in

Table V). LZ77 was designed primarily for text compression

and so lacks the whitening filter that is critical for effective

audio compression. FLAC and WAVPACK, which were expressly

designed for audio, provide consistently higher compression

factors (2.9–7.4) with FLAC performing better overall. Sur-

prisingly similar results were obtained using PPMd, indicat-

ing that the predictive function of this algorithm is effective

at decorrelating the sound prior to coding. The performance

difference between these three methods is most pronounced

for the PI240 sample. This sample has a very low average

level to which FLAC and PPMd were able to adapt giving

compression factors of more than 7 (i.e., just over 2 bits per

16-bit sample). The Golomb coder used in WAVPACK may be

less capable of producing short codes resulting in a 5.4 com-

pression factor.

The much simpler X3 algorithm gave compression fac-

tors of 3.0–7.2 with the test samples, attaining more than

87% of the compression obtained with FLAC. The code bank

used in X3 was able to respond to both the low signal levels

in PI240 and the high average levels in GI16 to give consis-

tently high compression despite the non-adaptive algorithm.

In the following, we explore how the design of the algorithm

enables this high performance with underwater sound.

B. Whitening filter

A first-order differentiator was selected for the whiten-

ing filter in X3 because of its computational simplicity and

because it roughly corrects the typical 4–6 dB/octave high

frequency roll-off in underwater ambient noise. However,

the test samples have considerably more complex noise

spectra due to a mixture of animal sounds and ambient and

anthropogenic noise (Fig. 2). Whitening filters matched to

each data set might therefore be expected to enable better

compression than the fixed first-order filter. Figure 4 shows

TABLE V. Performance comparison of X3 against public-domain lossless

compression algorithms. Shown are the measured compression factors (i.e.,

size uncompressed/size compressed) attained by each algorithm averaged

over the 5 min data sets. The “No filter” column gives the theoretical maxi-

mum compression factor achievable without a whitening filter, calculated

from the entropy of the signal [Eq. (1)].

Sample File size (MB) No filter X3 FLAC WAVPACK PPMd GZIP

GI16 9.2 1.6 3.1 3.2 2.9 3.0 1.8

GR48 27.4 1.9 3.4 3.9 3.9 3.3 2.0

GI60 34.3 2.5 3.0 3.1 3.1 3.0 2.2

NO96 54.9 2.3 4.0 4.2 4.4 4.3 2.6

EH120 68.8 2.5 3.8 4.0 3.9 4.0 2.6

LI192 109.8 1.9 3.5 4.0 3.8 3.6 2.0

PI240 137.6 2.8 7.2 7.4 5.4 7.5 4.6

FIG. 4. Compressibility of three test samples with different whitening filters.

The lines show the entropy (left-hand axis) and potential compression factor

(right-hand axis) when the test samples are filtered with a whitening

filter optimized for each test sample. The filters are 1st- to 8th-order

least-squared-error predictors. The points at filter order 0 indicate the per-

formance with no filter. The triangles indicate the performance with a fixed

first-order differentiator.

1394 J. Acoust. Soc. Am., Vol. 133, No. 3, March 2013 Johnson et al.: Underwater sound compression

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



the entropy of three of the test samples after filtering with

whitening filters of up to eighth order matched to each test

sample. Similar results were obtained with all seven test

samples. As anticipated, there is an enormous benefit in fil-

tering, and this is evidenced by a step change in entropy for

filter orders >0. However, there is little additional benefit in

using a high-order filter, even if it is tailored to the data, a

conclusion that has also been made for music compression

(Hans and Schafer, 2001). Using a fixed differentiator

resulted in entropies within 5% of those attained with 8th

order filters matched to each test sample, justifying the use

of this much simpler filter in X3.

C. Coding efficiency

In X3, the coder used for each block of data is selected

according to the peak signal level in the block. The coding

efficiency of this method is very high, at least for the test

samples, as can be seen by comparing the theoretical com-

pression factors (Table VI, 3rd column) with the measured

compressions obtained with X3 (Table V, 4th column). The

X3 compression factors are within 5% of those predicted

from entropy. In two samples (GR48 and NO96), X3 even

narrowly exceeds the theoretical compression factor. This is

a consequence of the block-oriented coding in X3: In block

coding, a different code-book can be used for each block

whereas the entropy calculation assumes a single code-book

for the entire data sequence.

The code set used in X3 comprises three variable-length

codes optimized for small (Rice-0) and medium (Rice-2 and

Rice-3) signal levels. Blocks with high signal levels are

compressed using a fixed-length code (BFP). For most

underwater soundscapes, high signal levels are rare, and so

the Rice codes will be used most often. In the test samples,

BFP coding was used in <10% of blocks in four of the seven

samples (Table VI, column 2). For these samples with low

transient rates, it is critical to select a Rice code matched to

the signal level in each block. To demonstrate this, Table VI

shows the compression factors obtained using just one fixed

code for variable-length blocks instead of the three codes

available in X3. For each test sample, the best performing

code provides most of the compression attained by X3, but

the best code varies across the test samples, roughly in pro-

portion to the average power in the whitened signal: Rice-0

performs best for PI240, the recording with the lowest signal

level, but for the other recordings, higher-order codes pro-

vide better results. Thus automatic selection from a range of

codes is a key factor enabling high compression over a vari-

ety of sampling rates and soundscapes.

D. Implementation

The X3 algorithm was originally designed for DTAG

sound recording tags (Johnson and Tyack, 2003), which use

Texas Instruments low-power digital signal processors

(DSPs, part number TMS320VC5509A) to collect and store

data. The X3 encoder has been implemented in a mixture

of C code and assembly language on this processor while the

decoder has been implemented in C to run on a PC. MATLAB

and C functions for the encoder and decoder are available

under the Gnu Public License and can be downloaded from:

http://soundtags.st-andrews.ac.uk. The encoder implementa-

tion is streamlined by the parallel data paths, conditional

arithmetic operations, and barrel shifter in the DSP chip. The

average operation count for the algorithm is 8.2 CPU cycles

per 16-bit input sample excluding function calls, which are

anyway amortized over the block length. For 192 kHz single-

channel 16-bit data, the complete algorithm requires 1.6

MOPs (million operations per second). Based on published

power consumption figures for the processor (Bhatnagar,

2008), this operation rate adds a power consumption of

approximately 0.9 mW if data and code are in internal mem-

ory amounting to <2% of the approximately 50 mW total

power consumption of the DTAG.

In comparison, FLAC requires an estimated 95 CPU

cycles to encode each 16-bit input sample when imple-

mented on the same processor using assembly language and

C code. This means an order of magnitude higher power

consumption translating into a 20% reduction in battery life

on the DTAG. A lower compression option (the �1 option)

in FLAC reduces the operation count to 47 cycles/sample at

the expense of a 2%–14% reduction in compression factor in

the test samples. In addition to operation count, a significant

factor for embedded implementations is the code size. The

FLAC encoder involves about 16 500 lines of C code whereas

X3 is implemented in <1000 lines. Although code length

depends to some extent on programming style, a smaller pro-

gram uses less processor resources and is easier to port and

maintain. The operation counts for FLAC and X3 do not

include CRC computation, which adds about 3.5 CPU cycles

per compressed byte (i.e., one to two cycles per input sam-

ple) on the TI DSP using a lookup table implementation

(Sarwate, 1988). The FLAC operation count includes MD5

signature calculation (a type of checksum used to uniquely

identify recordings) which is not essential but is an integral

part of the FLAC standard.

VI. DISCUSSION

Our objective has been to develop a low-complexity but

effective lossless compression algorithm for underwater

TABLE VI. The compression factor achieved by individual coders for each

test sample using a first-order differentiator as a whitening filter. For test

samples with high average power, a high fraction of block floating point

(BFP) blocks is needed, and the choice of variable-length code has corre-

spondingly less influence on the overall compression factor. The “Entropic”

column is the theoretical maximum compression factor derived from the en-

tropy of the filtered signal. Shaded cells indicate the code that gives the

highest realized compression factor for each sample. Codes marked * are

not used in the X3 compressor and are provided for comparison.

Sample Percentage BFP Entropic Elias-d* Rice-0 Rice-1* Rice-2 Rice-3

GI16 48 3.2 2.6 2.0 2.6 2.9 2.9

GR48 25 3.3 3.0 2.4 3.1 3.4 3.2

GI60 64 3.1 2.6 2.0 2.5 2.8 2.8

NO96 8 3.9 3.7 3.5 4.1 4.0 3.5

EH120 2 4.0 3.3 2.5 3.6 3.9 3.6

LI192 6 3.6 2.8 1.9 2.9 3.4 3.4

PI240 0 7.6 6.4 7.2 6.4 5.1 3.9
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sound. The method we propose is not especially novel as

similar techniques are embedded in several popular public-

domain audio compressors. However, these complex algo-

rithms designed for music compression include a battery of

compression strategies that are applied adaptively to track

changing sound spectra and levels. This adaptation process

makes the algorithms computationally demanding and so

less suitable for low-power recording systems. Here we

show that for a broad range of sampling rates and recording

conditions, a simpler non-adaptive compressor provides reli-

able compression factors of three or more, attaining >87%

of the compression of the more complex algorithms. In the

following, we discuss the performance and limitations of

such a simple approach and consider whether additional

improvements may be possible.

A. Algorithm performance

Two assumptions about underwater sound underpin

the design of the X3 algorithm. The first is that high-level

transients, e.g., from animal calls or boats, are relatively

rare and that the algorithm should therefore be optimized

for ambient noise. The second assumption is that the ambi-

ent noise has a stable low-frequency emphasis that can be

whitened with a low-order non-adaptive high-pass filter.

The performance of the resulting algorithm with a range

of test samples suggests that these assumptions are apt de-

spite variability in the average power spectra across the

samples (Fig. 2). The first-order differentiator used as a

whitening filter is, in effect, a predictor in which the next

sample is predicted by the current sample. The prediction

error is then encoded in the second step of the algorithm.

This simple predictor removes a large portion, but by no

means all, of the correlation between adjacent samples.

The remaining inter-sample correlations contribute to the

performance loss of X3 as compared to FLAC. But the high

compression factors nonetheless attained suggest that com-

pression performance is quite robust to imperfect whiten-

ing. Undoubtedly there are limits to this, but we argue that

the relative homogeneity in underwater ambient spectra

creates a special class of sounds that can be effectively

compressed without recourse to complex adaptive

methods.

The test samples vary in average level as well as spectra.

Although X3 is not adaptive, it is able to respond to different

sound levels via code selection. The test samples include one

with very low average levels (PI240) while three others had

high levels due to snapping shrimp (GI60 and GI16) or flow-

noise during lunge feeding (GR48). The inclusion of effi-

cient coders for low and high signal levels in the algorithm

allows it to adjust to these extremes, offering similar per-

formance in each case to adaptive compressors.

Although we have selected test samples that span a

range of sampling rates and recording conditions, the sam-

ples were produced by only two types of recording instru-

ments. Different audio circuits and ADCs are used in these

two devices but both were designed with the same general

considerations. It is possible then that performance may dif-

fer when the algorithm is applied to other recording systems

and environments. However, the consistent similarity

between X3 and FLAC on the test samples suggests that the

performance of X3 on other data can be predicted from the

compression factor obtained with FLAC.

B. Parameters

Four parameters control the performance of X3: Three

code-transition thresholds, T1� 3, and the block length, N.

The code-transition thresholds are used to determine which

coder to apply in each block. For computational simplicity, a

sub-optimal selection criterion is used based on the maxi-

mum absolute value in the block rather than the distribution

of signal levels. This assumes that blocks with a single out-

lier are rare and, in general, the peak value should be a fair

indicator of the level distribution in a short block of samples.

The performance of X3 in comparison to the more powerful

coding methods used in FLAC and WAVPACK suggest that this

is a reasonable assumption for underwater sound. The spe-

cific thresholds used (i.e., 3, 8, and 20) were arrived at by

trial and error but are close to the best performing thresholds

found in a simulation study using integerized Gaussian white

noise with varying standard deviation. There may be little

benefit, therefore, in changing these settings for different re-

cording situations.

The block length controls the ability of the algorithm to

track changing sound levels. If N is large, there is a high

chance that a sound transient will occur in a given block

meaning that a coder optimized to high signal levels will be

chosen even though most of the block may contain low signal

levels. In other words, the peak level becomes a poor proxy

for the average levels in a block as N increases. This suggests

using a small N for efficient compression but with very low

N, the block header limits the overall efficiency. X3 uses a 2-

bit header in the majority of blocks (i.e., those that are Rice

encoded) allowing block lengths as short as 20 samples with

only some 2% header overhead, enabling the algorithm to

respond efficiently to changing sound conditions.

C. Resolution and gain

The X3 algorithm, as given in Table II, is intended for

data with 16-bit resolution. This is a common word length,

but the method can be readily adapted to shorter or longer

words. To optimize performance with different word lengths,

the code-transition thresholds and the BFP header length

may need to be adjusted but few changes are otherwise

required. The resulting compression factor, however, may

change substantially: Longer word lengths will give poorer

compression in any lossless compressor. As ADCs with 18–

24 bits of resolution are increasingly being used in sound

recorders, it is thus worth considering how many of these

bits should be kept.

In underwater recordings, we are often interested in

weak signals just above the ambient noise floor as well as

occasional high level signals from nearby animals, necessi-

tating both a low system noise and a high dynamic range.

Dynamic range, DR, is defined as the power of the strongest

sine-wave signal possible without clipping divided by the

total noise power over the 0-to-Nyquist frequency band
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(Madsen and Wahlberg, 2007). An ideal n-bit ADC gener-

ates noise due to its quantized representation of the input sig-

nal giving a DR of 1.8þ 6n dB (Orfanidis, 2010), suggesting

that a 24-bit converter has a DR of 145 dB. But the dynamic

range of real ADCs is typically less than the value predicted

from the bit count. Low-power (i.e., �100 mW) audio

ADCs suitable for battery-powered equipment almost invari-

ably have a broadband dynamic range of <100 dB, irrespec-

tive of the number of bits and the type of ADC (successive

approximation or sigma-delta). To add to the confusion,

audio ADCs are often specified with an A-weighting (Dahl

et al., 2007) and the full-band (i.e., unweighted) dynamic

range can be substantially lower than the value given in the

data sheet. Thus a 24-bit 96 kHz ADC with 102 dB

A-weighted dynamic range will likely have a full-band

dynamic range of about 96 dB and so produces 7–8 bits that

are below the ADC noise floor. These bits are essentially

random and so limit the overall compressibility of the data

stream without adding useful resolution.

No matter how the data will be processed, there is no ben-

efit in recording more bits than are needed to match the DR of

the ADC. Specifically, truncating the data at DR/6þ 1 bits,

i.e., one more bit than implied by the dynamic range, will add

<1 dB to the system noise floor from quantization. Thus 16- or

17-bit samples are usually appropriate for underwater sound

recordings (Madsen and Wahlberg, 2007). Two options can

then be considered when setting the recording gain (i.e., the

gain of the preamplifier before the ADC). The lowest noise is

obtained without sacrificing much DR by setting the gain so

that the preamplifier noise is about 6–10 dB above the ADC

noise floor over the frequency range of interest. Using a higher

gain than this will only generate more bits of noise, reducing

the DR and the compressibility of the data with negligible

improvement in signal-to-noise ratio. At the other extreme, the

best dynamic range and compressibility is obtained at the

expense of signal-to-noise ratio by using a lower preamplifier

gain such that the system noise floor is dominated by the ADC

noise rather than the preamplifier noise, i.e., ADC noise is

about 6–10 dB above the preamplifier noise. Even lower gain

settings will reduce sensitivity without increasing DR. There

are usually some 12–15 dB between the high gain setting

which gives the lowest noise and the low gain setting that

maximizes DR.

D. Multi-channel recordings

The X3 algorithm operates on a single channel of data and

so must be applied to each channel separately in a multi-channel

recorder, raising the question of whether a joint compression

method might improve performance. Both FLAC and WAVPACK

incorporate cross-channel prediction to take advantage of redun-

dancy in stereo recordings of music. Similar redundancy should

be present in signals from hydrophones that are placed close

enough together. However, joint compression of multi-channel

underwater sound may actually provide little advantage to justify

the extra computational effort. Transients will be well correlated

between channels but are typically infrequent making them an

unrewarding target for compression effort. Low-frequency ambi-

ent noise will also be highly correlated between channels but is

already de-emphasized by the whitening filter in the compressor

without the need for cross-channel decorrelation. As a result,

most of the coding effort in an audio compressor is invested

in the residual high frequency noise that is dominated by sys-

tem noise and so is uncorrelated between channels. To sup-

port this prediction, we evaluated the compression factor

attained by FLAC and WAVPACK using cross-channel coding, on

a two-channel version of the LI192 recording. This recording

was made by a stereo DTAG with 3 cm hydrophone spacing.

The mean-squared coherence (Carter et al., 1973) between

the channels is predictably high at low frequencies (>0.8 up

to about 35 kHz), but, despite this, both FLAC and WAVPACK

produced the same compression factor (4.0 and 3.8, respec-

tively) for the two-channel sample as for the single channel

sample, indicating that no additional effective redundancy

was offered by the second channel.

E. Data formats

Data collected at sea are valuable and may be passed among

researchers multiple times for different analyses. Maintaining

metadata, timing information, and integrity checks with the data

thus seems essential. However, the file format most often used

for underwater sound recordings, the Microsoft WAV format,

has no standard way of implementing any of these to the level

required for archive-quality scientific recordings. Defining a

standard for such recordings is an urgent community concern

although one beyond the scope of this paper. Maintaining data

integrity and precise timing relationships is even more important

for compressed recordings. Compressed data are, by definition,

more sensitive to errors than uncompressed data, and the use of

variable length codes can make it difficult to recover from errors

without losing timing precision by dropping samples. Here we

recommend a minimum frame header (Fig. 1) to accompany

compressed data packets that provides information for timing

and error checking. This enables segments of data with errors to

be detected during decompression and replaced by the correct

number of zeros to maintain timing exactitude. Another useful

feature of this header is a source identification field that allows

frames of data from different sensors to be merged into the same

file. This enables, for example, measurements of temperature or

depth made throughout a recording to be stored along with the

sound data, overcoming a short-coming of FLAC that only allows

a single block of metadata at the start of each file.

An additional header is placed at the start of each file

containing metadata such as the date and location of the re-

cording, the equipment used, its sensitivity and frequency

response, and the sampling rate and number of channels in

the recording. We recommend a text-based mark-up format

(i.e., XML) for embedded metadata allowing descriptive in-

formation fields akin to Dublin Core (Weibel, 1997). The

benefit of this extra effort is that compressed files of under-

water recordings become complete, compact data archives

suitable for long-term storage and exchange.

VII. CONCLUSIONS

The low average power and consistent low-frequency

spectral emphasis of underwater sound make it particularly

suitable for lossless compression in digital sound recorders.
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We have described a very low complexity compression algo-

rithm specifically targeted for this application. The algorithm

is simple enough to be implemented in real time on low-power

microprocessors but offers compression factors of three or

more with 16-bit audio over a wide range of ambient noise

conditions and sampling rates. Despite the simplicity of the

method, it achieves more than 87% of the compression

attained with more complex adaptive methods on a test data

set. With suitable data framing and error-correction coding,

the compressed audio format is suitable for archiving and yet

can be accessed at random locations as with a normal uncom-

pressed audio format. For lossless compression to be effective,

it is essential to choose gains in the recording system such that

the lowest expected ambient noise, or the self noise of the re-

corder if this dominates, is no more than 10 dB above the

quantization noise associated with the fixed point representa-

tion. Using this gain setting has a negligible impact on the abil-

ity to detect and characterize weak sounds but, compared to

the higher gains often used in underwater recordings, results in

both wide dynamic range and high compression factors.
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